Supersymmetry and Exceptional New Physics

just beyond the Standard Model
Part 1

- Why go beyond the Standard Model?
- Supersymmetry
 - The Hierarchy Problem
- SUSY models: MSSM → E6SSM
- Further Motivation
 - Grand Unification, Dark matter...
- Radiative electroweak symmetry breaking
- Benchmark spectra

In this today’s talk I will mostly be pretending that the recent LHC constraints haven’t happened...
In this today’s talk I will mostly be pretending that the recent LHC constraints haven’t happened...
Contents

Part 1

- Why go beyond the Standard Model?
- Supersymmetry
 - The Hierarchy Problem
- SUSY models: MSSM \rightarrow E6SSM
- Further Motivation
 - Grand Unification, Darkmatter...
- Radiative electroweak symmetry breaking
- Benchmark spectra

Part 2

Next week I will focus on the LHC

- LHC phenomenology
- Impact of LHC search constraints
- Improved precision
Standard Model

- Standard Model (SM) of particle physics
 - Beautiful description of Electromagnetic, Weak and Strong forces
 - Tested to incredible precision, e.g. the anomalous magnetic moment of the electron,
 \[a_e(\text{Exp}) = 11596521810 \pm 7 \times 10^{-13} \]
 \[a_e(\text{SM}) = 11596521827.8(0.772)(0.011)(0.026) \times 10^{-13} \]
 - Electroweak (EW) symmetry is broken by the Higgs Mechanism.
 - Predicts the (as yet) unobserved Higgs boson.
 - The Higgs boson is sought at the Large Hadron collider.
Beyond the Standard Model

“If it ain’t broke, why fix it?”

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.
- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) \((\Lambda \sim 10^{19} \text{ GeV}) \)
- Neutrinos have mass
- Baryon/lepton asymmetry
- Expect New Physics at the TeV scale as well
 - Hierarchy Problem
 - No Gauge Coupling Unification in SM
 - Dark matter
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
SUperSYmmetry (SUSY)

- A symmetry between fermions and bosons
 \[Q |\text{Boson}\rangle = |\text{Fermion}\rangle \]
 \[Q |\text{Fermion}\rangle = |\text{Boson}\rangle \]

- Extends special relativity, evading Coleman and Mandula “No-Go” theorem.

- The Super Poincare algebra:

 \[P_\mu \quad \text{- translations} \]
 \[M_{\mu\nu} \quad \text{- rotations and boosts} \]
 \[Q_\alpha \quad \text{- SUSY transformation} \]

\[\{Q^A_\alpha, \bar{Q}^B_\beta\} = 2\sigma^\mu_{\alpha\beta} P_\mu \delta^A_B \]
\[\{Q^A_\alpha, Q^B_\beta\} = 0 \]
\[[P_\mu, Q^A_\alpha] = [P_\mu, \bar{Q}^A_\alpha] = 0 \]

- SUSY = a translation in Superspace. \[z = (x_\mu, \theta^a, \bar{\theta}_{\dot{a}}) \]
Hierarchy Problem

- Expect New Physics at Planck Energy (Mass) ($\Lambda \sim 10^{19}$ GeV)
- Higgs mass sensitive to this scale ($m_h \sim 100$ GeV)

\[
\text{physical mass} = \text{"bare mass" } + \text{"loops"}
\]

\[
m_h^2 = m_0^2 - \frac{\lambda f^2}{8\pi^2} (\Lambda^2 - \int_0^1 dx 2\Delta \ln \frac{\Lambda^2 + \Delta}{\Delta})
\]

\[
m_h^2 = m_0^2 - C\Lambda^2 + \ldots
\]

\Rightarrow Huge Fine tuning!

- Cut off integral at Planck Scale (Λ) \(\leftarrow\) naive approach to renormalisation
In Supersymmetry

Bosonic degrees of freedom = Fermionic degrees of freedom.

⇒ Two scalar superpartners for each fermion

\[m_H^2 = m_0^2 - \frac{\lambda^2_t}{8\pi^2} \left(\Lambda^2 - \int_0^1 dx 2\Delta \ln \frac{\Lambda^2 + \Delta}{\Delta} \right) \]

\[+ \frac{\lambda^2_t}{16\pi^2} \left(2\Lambda^2 - m_{\tilde{t}_1}^2 \ln \frac{\Lambda^2 + m_{\tilde{t}_1}^2}{m_{s1}^2} - m_{\tilde{t}_2}^2 \ln \frac{\Lambda^2 + m_{\tilde{t}_2}^2}{m_{s2}^2} \right) \]

In SUSY \(\lambda_{\tilde{t}} = \lambda^2_t \)

 Quadratic divergences cancelled!

⇒ No Fine Tuning?
Beyond the Standard Model

“If it ain’t broke, why fix it?”
Some experimentalist.

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.

- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) \(\Lambda \sim 10^{19} \, \text{GeV} \)

- Neutrinos have mass

- Baryon/lepton asymmetry

- Expect New Physics at the TeV scale as well
 - No Gauge Coupling Unification in SM
 - Dark matter
 - Hierarchy Problem / Naturalness
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
Minimal Supersymmetric Standard Model (MSSM)

The MSSM = minimal particle content compatible with known physics, i.e Standard Model particles and properties.

Basic idea: take SM and supersymmetrise:

Warning: Image not entirely accurate.
Superfield content of the MSSM

Gauge group is that of SM: \(G_{SM} \equiv SU(3) \times SU(2) \times U(1)_Y \)

Vector superfields of the MSSM

<table>
<thead>
<tr>
<th>Supermultiplet</th>
<th>Gauge</th>
<th>spin 1/2</th>
<th>spin 1</th>
<th>(SU(3)_C)</th>
<th>(SU(2)_L)</th>
<th>(U(1)_Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{G})</td>
<td>(SU(3)_C)</td>
<td>(\tilde{g})</td>
<td>(g)</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{W})</td>
<td>(SU(2)_W)</td>
<td>(\tilde{W}^\pm \tilde{W}^0)</td>
<td>(W^\pm W^0)</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>(\hat{B})</td>
<td>(U(1)_Y)</td>
<td>(\tilde{B}^0)</td>
<td>(B^0)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Gauge supermultiplets of the MSSM, and gauge group representations.
MSSM Chiral Superfield Content

<table>
<thead>
<tr>
<th>Supermultiplet</th>
<th>spin 0</th>
<th>spin 1/2</th>
<th>(SU(3)_C)</th>
<th>(SU(2)_L)</th>
<th>(U(1)_Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{Q}_i)</td>
<td>((\tilde{u}_L ; \tilde{d}_L)_i)</td>
<td>((u_L ; d_L)_i)</td>
<td>3</td>
<td>2</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(\bar{u}_i)</td>
<td>(\tilde{u}_{R_i}^*)</td>
<td>(u_{R_i}^\dagger)</td>
<td>(\bar{3})</td>
<td>1</td>
<td>(-\frac{2}{3})</td>
</tr>
<tr>
<td>(\bar{d}_i)</td>
<td>(\tilde{d}_{R_i}^*)</td>
<td>(d_{R_i}^\dagger)</td>
<td>(\bar{3})</td>
<td>1</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\hat{L}_i)</td>
<td>((\tilde{\nu} ; \tilde{e}_L)_i)</td>
<td>((\nu ; e_L)_i)</td>
<td>1</td>
<td>2</td>
<td>(-\frac{1}{2})</td>
</tr>
<tr>
<td>(\bar{e}_i)</td>
<td>(\tilde{e}_{R_i}^*)</td>
<td>(e_{R_i}^\dagger)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\hat{H}_u)</td>
<td>((H_u^+ ; H_u^0))</td>
<td>((\tilde{H}_u^+ ; \tilde{H}_u^0))</td>
<td>1</td>
<td>2</td>
<td>(+\frac{1}{2})</td>
</tr>
<tr>
<td>(\hat{H}_d)</td>
<td>((H_d^0 ; H_d^-))</td>
<td>((\tilde{H}_d^0 ; \tilde{H}_d^-))</td>
<td>1</td>
<td>2</td>
<td>(-\frac{1}{2})</td>
</tr>
</tbody>
</table>
Mass eigenstates of the MSSM (and SUSY jargon)

SUSY partners of SM particles are “sparticles”.

Scalar partners of SM fermions are “sfermions” → “squarks” and “sleptons”.

Fermion partners of SM bosons are “gauginos/higgsinos”

<table>
<thead>
<tr>
<th>SUSY partners</th>
<th>Mass eigenstates</th>
</tr>
</thead>
<tbody>
<tr>
<td>up squarks</td>
<td>\tilde{u}_L, \tilde{u}_R, \tilde{s}_L, \tilde{s}_R, \tilde{t}_L, \tilde{t}_R</td>
</tr>
<tr>
<td>down squarks</td>
<td>\tilde{d}_L, \tilde{d}_R, \tilde{c}_L, \tilde{c}_R, \tilde{b}_L, \tilde{b}_R</td>
</tr>
<tr>
<td>charged sleptons</td>
<td>\tilde{e}_L, \tilde{e}_R, $\tilde{\mu}_L$, $\tilde{\mu}_R$, $\tilde{\tau}_L$, $\tilde{\tau}_R$</td>
</tr>
<tr>
<td>sneutrinos</td>
<td>$\tilde{\nu}e$, $\tilde{\nu}\mu$, $\tilde{\nu}_\tau$</td>
</tr>
<tr>
<td>Higgs bosons</td>
<td>H_u^0, H_d^0, H_u^+, H_d^-</td>
</tr>
<tr>
<td>neutralinos</td>
<td>\tilde{B}_u^0, \tilde{W}_u^0, \tilde{H}_u^0, \tilde{H}_d^0</td>
</tr>
<tr>
<td>charginos</td>
<td>\tilde{W}_u^\pm, \tilde{H}_u^+, \tilde{H}_d^-</td>
</tr>
<tr>
<td>gluino</td>
<td>\tilde{g}</td>
</tr>
</tbody>
</table>
SUSY Theory space

Gauge group (vector superfields)

$G_{SM} \times U(1)_N$

USSM

G_{SM}

MSSM

NMSSM

Minimal superfields

Complete E6 multiplets

Chiral superfields

E6SSM
The μ problem

- The MSSM superpotential is written down before EWSB or SUSY breaking:
 - it should know nothing about the EW scale.

\[W_{MSSM} = Y_u \tilde{Q}_L H_u u_R - Y_d \tilde{Q}_L \cdot H_d d_R - Y_e \tilde{E} \cdot H_d d_R - \mu H_u H_d \]

- The superpotential contains a mass scale!

- What mass should we use?
 - The natural choices would be 0 or M_{Planck} (or M_{GUT})

- Phenomenological Constraints $\Rightarrow \mu \approx 0.1 - 1$ TeV
Supersymmetric Models

- **Minimal Supersymmetric Standard Model (MSSM)**

\[W_{MSSM} = Y_u \bar{Q}_L H_u u_R - Y_d \bar{Q}_L H_d d_R - Y_e \bar{E} H_d d_R - \mu H_u H_d \]

- **Next to Minimal Supersymmetric Standard Model (NMSSM)**

[Dine, Fischler and Srednicki]
[Ellis, Gunion, Haber, Roszkowski, Zwirner]

\[W_{NMSSM} = Y_u \bar{Q}_L H_u u_R - Y_d \bar{Q}_L H_d d_R - Y_e \bar{E} H_d d_R - \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \]

Other variants: nmMSSM, PQSNMSSM.

\[\mu_{eff} = \lambda \langle S \rangle \]

- **U(1) extended Supersymmetric Standard Model (USSM)**

- **Exceptional Supersymmetric Standard Model (E_6SSM)**

Exceptional New Physics

just beyond the Standard Model

E_8 \times E_8' Heterotic String Theory

Grand Unified Theory, e.g. SU(5), SO(10), E_6

Desert

Exceptional New Physics (exotic matter, e.g. Leptoquarks)

Supersymmetry, e.g. MSSM, E_6SSM

Electroweak physics

Exotic matter from complete E_6 multiplets survives to low energies!
Beyond the Standard Model

“If it ain’t broke, why fix it?”

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.

- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) ($\Lambda \sim 10^{19}$ GeV)

- Neutrinos have mass
- Baryon/lepton asymmetry

- Expect New Physics at the TeV scale as well
 - No Gauge Coupling Unification in SM
 - Dark matter
 - Hierarchy Problem / Naturalness
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
Exceptional Supersymmetric Standard Model

- E$_6$ inspired model with an extra gauged U(1) symmetry

\[SU(3) \times SU(2) \times U(1)_Y \times U(1)_N \]

“Inspired” by:

\[U(1)_N = \cos \theta U(1)_\chi + \sin \theta U(1)_\psi \]

\[E_6 \rightarrow SO(10) \times U(1)_\psi \]

\[\downarrow \]

\[SU(5) \times U(1)_\chi \]

\[\downarrow \]

\[SU(3)_C \times SU(2)_W \times U(1)_Y \]

Solves the μ-problem!

- In the E$_6$SSM $\tan \theta = \sqrt{15} \Rightarrow$ right-handed neutrino is a gauge singlet

\Rightarrow super heavy right-handed neutrinos, generates lepton/baryon asymmetry of the universe [JHEP 0812, 042 (2008), S.F.King, R. Luo, R.Nevorov & D.J. Miller]

- Matter from 3 complete generations of E$_6$

\Rightarrow automatic cancellation of gauge anomalies
Beyond the Standard Model

“If it ain’t broke, why fix it?”

Some experimentalist.

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.

- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) ($\Lambda \sim 10^{19}$ GeV)

- Neutrinos have mass
- Baryon/lepton asymmetry

- Expect New Physics at the TeV scale as well
 - No Gauge Coupling Unification in SM
 - Dark matter
 - a_μ: 3 σ deviation
 - Hierarchy Problem / Naturalness
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
Running modified at TeV scale! ⇒ TeV scale new physics

Minimal Supersymmetric Standard Model

\[
\frac{d \alpha_i^{-1}}{d (\log Q)} = \frac{b_i}{2\pi}
\]

SU(N) gauge theory

\[
b_N = \frac{11}{3} N - \frac{2}{3} N - \frac{1}{3} n_f - \frac{1}{6} n_s
\]

U(1) gauge

\[
b_1 = -\frac{1}{3} \sum_i Y_i^2
\]

(matter particles in fundamental representation)

Gauginos

Number of fermions

Number of scalars
GUT matter multiplets

\[E_6 \rightarrow SO(10) \rightarrow SU(5) \]

\[\begin{array}{c}
\{ 10 \}^i + \\
\{ 5^* \}^i + \\
\{ 1 \}^i \\
\end{array} \]

\[Q_i, u_i^c, e_i^c \]

\[L_i, d_i^c \]

\[N_i^c \]

\[\begin{array}{c}
\{ 5 \}^{(i)} + \\
\{ 5^* \}^{(i)} + \\
\{ 1 \}^{(i)} \\
\end{array} \]

\[H_{u,(i)}, D_{(i)} \]

\[H_{d,(i)}, \bar{D}_{(i)} \]

\[S_i \]

SM singlets

Color triplets
Gauge Coupling Unification

Running modified at TeV scale!

\Rightarrow TeV scale new physics

Minimal Supersymmetric Standard Model

$d\alpha_i^{-1} \over d(\log Q) = {b_i \over 2\pi}$

Complete GUT multiplets give equal Δb_i

Single step unification \Rightarrow incomplete multiplets

Higgs $\not\in$ SU(5) matter multiplet.

$SU(N)$ gauge theory

$\frac{d\alpha_i^{-1}}{d(\log Q)} = \frac{b_i}{2\pi}$

$SU(N)$ gauge theory

$b_N = \frac{11}{3}N - \frac{2}{3}N - \frac{1}{3}n_f - \frac{1}{6}n_s$

Gauginos

$U(1)$ gauge

$b_1 = -\frac{1}{3} \sum_i Y_i^2$

(matter particles in fundamental representation)

Number of fermions

Number of scalars

$N = 1$

$N = 3$

$nf = 1$

$ns = 1$
Gauge Coupling Unification

Excepional Supersymmetric Standard Model

- Evolution changed dramatically!
- Strong gauge coupling beta vanishes at one loop!
- 2-loop and threshold effects important!
- Higgs $\in E_6$ 27plets \Rightarrow relics of $27'$ and $\overline{27}'$ (H' and \overline{H}').
 (for 2 step unification without relics see R.Howl, S.F. King PLB 652, 331, JHEP 0801:030)

SU(N) gauge theory

$$b_N = \frac{11}{3} N - \frac{2}{3} N - \frac{1}{3} n_f - \frac{1}{6} n_s$$

New exotic matter!

$$b_1 = -\frac{1}{3} \sum_i Y_i^2$$

(matter particles in fundamental representation)
Beyond the Standard Model

“If it ain’t broke, why fix it?”

Some experimentalist.

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.
- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) \(\Lambda \sim 10^{19} \text{ GeV} \)
- Neutrinos have mass
- Baryon/lepton asymmetry
- Expect New Physics at the TeV scale as well
 - No Gauge Coupling Unification in SM
 - Dark matter
 - Hierarchy Problem / Naturalness
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
Dark Matter

- No electromagnetic interaction \Rightarrow ‘Dark’
- ‘Visable’ through gravitational interactions
- 85% of the matter in the universe is Dark
- So Dark matter exists, but what is it?

Neutrino Mass limits \Rightarrow SM cannot account for observed Dark matter

Physics beyond the SM is required!
Particle physics explanation for Dark Matter required!

Both viewing the same thing: dark matter!

A particle theorist is interested in both. Fundamental theories should fit all data!
MSSM R-parity

Aim: build \mathcal{L}_{SUSY} invariant under G_{SM}, with a chiral superfield for all SM fermions and gauge supermultiplet for each gauge boson of SM.

$$\mathcal{W}_{MSSM}^{RPV} = \epsilon_{\alpha\beta}(y^i_u \tilde{H}_u^\alpha \bar{u}_i \tilde{Q}_j^\beta - y^i_d \tilde{H}_d^\alpha \bar{d}_i \tilde{Q}_j^\beta - y^i_e \tilde{H}_e^\alpha \bar{e}_i \tilde{L}_j^\beta + \mu \tilde{H}_u^\alpha \tilde{H}_d^\beta)$$

$$+ \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k + \lambda'_{ijk} L_i Q_j \bar{d}_k + \mu' L_i H_u + \frac{1}{2} \lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k$$

Strong constraints on L and B violating operators.

Tightest constraint comes from non-observation of proton decay

Solution: Impose R-parity.

$$P_R = (-1)^{3(B-L)+2s}$$

All SM particles + Higgs bosons: $P_R = +1$ ⇒ SUSY particles appear in even numbers

All SUSY particles: $P_R = -1$ ⇒ SUSY pair production

⇒ Lightest Supersymmetric Particle (LSP) is stable!

Gives rise to a Dark Matter candidate.
Dark Matter and R-parity

- Baryon and Lepton number violating interactions \Rightarrow Proton decay
- Impose a Z_2 parity to forbid them.

- R-Parity: SM particles even
 SUSY partners odd
\Rightarrow SUSY particles decay into an odd number of SUSY particles.

Lightest Supersymmetric Particle (LSP)
Stable, neutral, non-baryonic matter
\Rightarrow Dark Matter Candidate

- Two independent phenomenological problems, same solution!
- Can the model correctly predict the relic abundance?
Generic $m_{1/2} - m_0$ plane

Slide stolen from: Keith Olive SUSY 2010
E₆SSM Discrete Symmetries

- Z^B_2 or Z^L_2 symmetries
 - To evade rapid proton decay.
 - Like R-parity but D is odd while \bar{D} is even.
 - $Z^B_2 \Rightarrow \text{leptoquarks}; \quad Z^L_2 \Rightarrow \text{diquarks}.$

- Z^H_2 symmetry (approximate)
 - To evade large Flavour Changing Neutral Currents.
 - $H_{1,3}, H_{2,3}$ and S_3 (superfields): even, all others: odd.
 - Exotic quarks and inert Higgs decay, violate Z^H_2
 $\Rightarrow Z^H_2$ only approximate!

For top down constructions see:
King and Howl, PLB 687, 355 (2010),

- In E₆SSM Relic density can be achieved entirely from the inert sector,
 or from a bino like neutralino with massless singlinos.
E$_6$SSM Superpotential

- Imposing $Z_2^{B/L}$ and Z_2^H

$$ W_{E_6SSM} \rightarrow \lambda_i \hat{S}(\hat{H}_{1i} \hat{H}_{2i}) + \kappa_i \hat{S}(\hat{D}_i \hat{D}_i) + f_{\alpha\beta} \hat{S}_\alpha(\hat{H}_d \hat{H}_{2\beta}) $$

$$ + \tilde{f}_{\alpha\beta} \hat{S}_\alpha(\hat{H}_{1\beta} \hat{H}_u) + \frac{1}{2} M_{ij} \hat{N}_i^c \hat{N}_j^c + \mu'(\hat{H'}^\dagger \hat{H'}) $$

$$ + h_{4j}^E(\hat{H}_d \hat{H'}) \hat{e}_j^c + h_{4j}^N(\hat{H}_u \hat{H'}) \hat{N}_j^c + W_{MSSM}(\mu = 0) $$

- To ensure only 3rd gen. gets vevs, we choose:

$$ \kappa_i \sim \lambda_3 \geq \lambda_{1,2} \Rightarrow f_{\alpha\beta}, \tilde{f}_{\alpha\beta}, h_{4j}^E, h_{4j}^N. $$

- Further integrating out super heavy, right handed neutrinos, and dropping μ', leaves:

$$ W_{E_6SSM} \approx \lambda_i S H_{1,i} H_{2,i} + \kappa_i S D_i \bar{D}_i $$

$$ + h_t H_u Q t^c + h_b H_d Q b^c + h_\tau H_d L \tau^c $$
Beyond the Standard Model

“If it ain’t broke, why fix it?”

Some experimentalist.

- The SM has not been fully verified*
 - The SM Higgs boson has not been found yet.

- SM is incomplete
 - Neglects gravitation, very weak at low energies (large distances)
 - Expect New Physics at Planck Energy (mass) ($\Lambda \sim 10^{19}$ GeV)

- Neutrinos have mass

- Baryon/lepton asymmetry

- Expect New Physics at the TeV scale as well
 - No Gauge Coupling Unification in SM
 - Dark matter
 - Hierarchy Problem / Naturalness
 - ‘Ad hoc’ shape for Higgs potential.

*though there is an enormous body of experimental evidence to support it.
Next Week...

Focus on LHC:

- What we might see
- Current status
- How to interpret what it means for SUSY.

- Radiative electroweak symmetry breaking

- Benchmark spectra

- Closer Look at LHC phenomenology of E6SSM

- LHC search constraints

- Naturalness / fine tuning.