The Quark-Meson Coupling model as a description of dense matter

J. D. Carroll

(CSSM, University of Adelaide, Australia)

MENU 2010: 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, Williamsburg VA
Outline

1. The Basics:
 - The Nature of Dense Matter
 - The Models

2. Simulations:
 - Hadronic Matter
 - Mixed-Phase Matter
We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
Motivation

We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
Motivation

We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
Motivation

We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
Motivation

We wish to understand the properties of matter over a wide range of densities; from single atomic nuclei to neutron stars.

In order to do this, we must first understand the fundamental and effective degrees of freedom at each density scale.

In order to evaluate success, we need to compare predictions over a wide range of density scales to observable phenomena.
What we know:

- Quarks and Gluons are the fundamental degrees of freedom.
- At low densities, Baryons (Nucleons) are the effective degrees of freedom.
- At high densities...
What we know:

- Quarks and Gluons are the fundamental degrees of freedom
- At low densities, Baryons (Nucleons) are the effective degrees of freedom
- At high densities...
What we know:

- Quarks and Gluons are the fundamental degrees of freedom
- At low densities, Baryons (Nucleons) are the effective degrees of freedom
- At high densities...
What we know:

- Quarks and Gluons are the fundamental degrees of freedom.
- At low densities, Baryons (Nucleons) are the effective degrees of freedom.
- At high densities...
What We Know:

- Quarks and Gluons are the fundamental degrees of freedom.
- At low densities, Baryons (Nucleons) are the effective degrees of freedom.
- At high densities... ???

J. D. Carroll
QMC dense matter
What we know:

- Quarks and Gluons are the fundamental degrees of freedom
- At low densities, Baryons (Nucleons) are the effective degrees of freedom
- At high densities... ???
What we know:

- Quarks and Gluons are the fundamental degrees of freedom
- At low densities, Baryons (Nucleons) are the effective degrees of freedom
- At high densities... ??? = Hyperons? Quarks? Other?
Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model

- Simple description of nucleons immersed in mean-field σ, ω, and ρ potentials,
- Constructed at the baryon level,
- Issues with large scalar potentials causing negative effective masses.

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the σ field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

\[
M_B^* = M_B + \Sigma_B = M_B - g_{\sigma B} \langle \sigma \rangle
\]

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the \(\sigma \) field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model

\[M_B^* = M_B + \Sigma_B = M_B - g_{\sigma B} \langle \sigma \rangle \]

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the \(\sigma \) field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

\[M_B^* = M_B + \Sigma^s_B = M_B - g_{\sigma B} \langle \sigma \rangle \]

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the \(\sigma \) field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model

\[M_B^* = M_B + \Sigma_B = M_B - g_{\sigma B} \langle \sigma \rangle \]

Quark-Meson Coupling (QMC) Model

- Similar final form as QHD, but with self-consistent response to the \(\sigma \) field, despite construction from quark level,
- Better predictions for bulk properties of dense matter,
- No issues with negative effective masses.
Quantum HadroDynamics (QHD) Model

\[
M_B^* = M_B + \Sigma_B = M_B - g_{\sigma B} \langle \sigma \rangle
\]

Quark-Meson Coupling (QMC) Model

\[
M_B^* = M_B + \Sigma_B = M_B - w_B^s g_{\sigma N} \langle \sigma \rangle + \frac{d}{2} \tilde{w}_B^s (g_{\sigma N} \langle \sigma \rangle)^2
\]
In QHD, at Hartree level (mean-field), the scalar self-energy involves only the tadpole term:
Hadronic Models
A Brief Overview

In QHD, at Hartree level (mean-field), the scalar self-energy involves only the tadpole term:

\[\Sigma^s_B (\text{QHD}) \]

\[
\Sigma^s_B = -g_{\sigma B} \langle \sigma \rangle \\
= -g_{\sigma B} \sum_{B'} \frac{g_{\sigma B'}}{m^2_{\sigma}} \frac{(2J_{B'} + 1)}{(2\pi)^3} M^*_B \int \frac{\theta(k_{F_{B'}} - |\vec{k}|)}{\sqrt{\vec{k}^2 + M^*_B}} d^3 k
\]
In QHD, at Hartree level (mean-field), the scalar self-energy involves only the tadpole term:

\[
\Sigma_B^s = -g_\sigma B \langle \sigma \rangle \\
= -g_\sigma B \sum_{B'} \frac{g_{\sigma B'}}{m_\sigma^2} \frac{(2J_{B'} + 1)}{(2\pi)^3} M_{B'}^* \int \frac{\theta(k_{F_{B'}} - |\vec{k}|) d^3k}{\sqrt{\vec{k}^2 + M_{B'}^*}}
\]
In QHD, at Hartree level (mean-field), the scalar self-energy involves only the tadpole term:

\[
\Sigma^s_B = -g_\sigma B \langle \sigma \rangle \\
= -g_\sigma B \sum_{B'} \frac{g_{\sigma B'}}{m_\sigma^2} \frac{(2J_{B'} + 1)}{(2\pi)^3} M^*_{B'} \int \frac{\theta(k_{F_{B'}} - |\vec{k}|) d^3 k}{\sqrt{\vec{k}^2 + M^*_{B'}^2}}
\]
Hyperonic QMC

- \(B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\} \)
- \(\ell \in \{e^-, \mu^-\} \)
- \(m \in \{\sigma, \omega, \rho\} \)
Hyperonic QMC

- $B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\}$
- $\ell \in \{e^-, \mu^-\}$
- $m \in \{\sigma, \omega, \rho\}$
Hyperonic QMC

- $B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\}$
- $\ell \in \{e^-, \mu^-\}$
- $m \in \{\sigma, \omega, \rho\}$
Hyperonic QMC

- \(B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\} \)
- \(\ell \in \{e^-, \mu^-\} \)
- \(m \in \{\sigma, \omega, \rho\} \)

Saturation

\[
\begin{align*}
(E/A)_{\rho_0} &= -15.86 \text{ MeV,} \\
(\rho_{\text{total}})_{\rho_0} &= 0.16 \text{ fm}^{-3} \\
(a_{\text{sym}})_{\rho_0} &= 32.5 \text{ MeV}
\end{align*}
\]

\[\begin{array}{ll}
\text{---} & g_{\sigma N}, g_{\omega N} \\
\text{---} & g_{\rho N}
\end{array}\]
Hyperonic QMC

- $B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\}$
- $\ell \in \{e^-, \mu^-\}$
- $m \in \{\sigma, \omega, \rho\}$

Saturation

\[
\begin{align*}
(E/A)_{\rho_0} &= -15.86 \text{ MeV}, \\
(\rho_{\text{total}})_{\rho_0} &= 0.16 \text{ fm}^{-3}, \\
(a_{\text{sym}})_{\rho_0} &= 32.5 \text{ MeV}
\end{align*}
\]

$g_{\sigma N}, g_{\omega N}$

$g_{\rho N}$
Hyperonic QMC

- $B \in \{p, n, \Lambda, \Sigma^-, \Sigma^0, \Sigma^+, \Xi^-, \Xi^0\} = \{N, Y\}$
- $\ell \in \{e^-, \mu^-\}$
- $m \in \{\sigma, \omega, \rho\}$

Saturation

\[
\begin{align*}
(E/A)_{\rho_0} &= -15.86 \text{ MeV}, \\
(\rho_{\text{total}})_{\rho_0} &= 0.16 \text{ fm}^{-3} \\
(a_{\text{sym}})_{\rho_0} &= 32.5 \text{ Mev}
\end{align*}
\]

"\(g_{\sigma N}, g_{\omega N}\)" and "\(g_{\rho N}\)"

Effective masses from Ref. [4]: Guichon et. al. doi:10.1016/j.nuclphysa.2008.10.001 (previously from Ref. [5]: Rikovska-Stone et. al. doi:10.1016/j.nuclphysa.2007.05.011) derived from the bag model.
Equation of State (EOS) is calculated assuming that

\[\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{\frac{k^2}{F_i} + (M_i + \Sigma_i^s)^2 + \Sigma_i^0} \]
Equation of State (EOS) is calculated assuming that

\[\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{k_F^2 F_i + (M_i + \sum_i^s)^2 + \sum_i^0} \]
Equation of State (EOS) is calculated assuming that

\[\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{\frac{k_i^2}{F_i} + (M_i + \Sigma_i^s)^2 + \Sigma_i^0} \]
Hyperonic QMC

Equation of State (EOS) is calculated assuming that

$$\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{k_F^2 + (M_i + \Sigma_s^i)^2 + \Sigma_0^i}$$
Hadronic Models
A Brief Overview: Finite Nuclei

Finite Nuclei:
The mean-fields $\langle m \rangle$ are calculated via the equations of motion:

\[
\Box + m^2_\sigma \sigma = g_N \sigma \bar{\psi} \psi,
\]

\[
\partial^\mu \Omega_{\mu\nu} = g_N \omega \bar{\psi} \gamma_\nu \psi - m^2_\omega \omega_\nu,
\]

\[
\partial^\mu R^a_{\mu\nu} = g_\rho \bar{\psi} \gamma_\nu \tau^a \psi - m^2_\rho \rho^a_\nu.
\]
The mean-fields $\langle m \rangle$ are calculated via the equations of motion;

\begin{equation*}
\begin{align*}
(\Box + m^2_{\sigma}) \sigma &= g_N \bar{\psi} \psi, \\
\partial^\mu \Omega_{\mu\nu} &= g_N \omega \bar{\psi} \gamma_\nu \psi - m^2_\omega \omega_\nu, \\
\partial^\mu R^a_{\mu\nu} &= g_\rho \bar{\psi} \gamma_\nu \tau^a \psi - m^2_\rho \rho^a_\nu.
\end{align*}
\end{equation*}
The mean-fields $\langle m \rangle$ are calculated via the equations of motion:

Equations of Motion

\[
(-\nabla^2 + m^2_\sigma) \sigma(x) = -g_N \sigma \text{Tr}[iG_H(x, x)],
\]

\[
(-\nabla^2 + m^2_\omega) \omega^\mu(x) = -g_N \omega \text{Tr}[i\gamma^\mu G_H(x, x)],
\]

\[
(-\nabla^2 + m^2_\rho) \rho^{\mu a}(x) = -g_\rho \text{Tr}[i\tau^a \gamma^\mu G_H(x, x)].
\]
Consider the solutions of the Dirac equation to be written as

\[U_{\alpha}(x) = U_{\kappa m t}(x) = \begin{bmatrix} \frac{iG_{\kappa t}(r)}{r} & \Phi_{\kappa m t} \\ -\frac{F_{\kappa t}(r)}{r} & \Phi_{-\kappa m t} \end{bmatrix} \]
Equations of Motion

\[
\frac{d^2}{dr^2} \sigma_0(r) + \frac{2}{r} \frac{d}{dr} \sigma_0(r) - m_\sigma^2 \sigma_0(r) = -g_N \sigma \sum_{\alpha}^{\text{occ}} \left(\frac{2j_\alpha + 1}{4\pi r^2} \right) \left(|G_\alpha(r)|^2 - |F_\alpha(r)|^2 \right),
\]

\[
\frac{d}{dr} G_\alpha(r) + \frac{\kappa}{r} G_\alpha(r) - \left[\epsilon_\alpha - g_N \omega_0(r) - \tau_\alpha g_\rho \rho_0(r) + M^*(r) \right] = 0
\]

\[
\int_0^\infty dr \left(|G_\alpha(r)|^2 + |F_\alpha(r)|^2 \right) = 1
\]
Equations of Motion

\[
\frac{d^2}{dr^2} \sigma_0(r) + \frac{2}{r} \frac{d}{dr} \sigma_0(r) - m_\sigma^2 \sigma_0(r) \quad = \quad -g_N \sigma \sum_{\alpha}^{\text{occ}} \left(\frac{2j_\alpha + 1}{4\pi r^2} \right) \left(|G_\alpha(r)|^2 - |F_\alpha(r)|^2 \right),
\]

\[
\frac{d}{dr} G_\alpha(r) + \frac{\kappa}{r} G_\alpha(r) - [\epsilon_\alpha - g_N \omega_0(r) - \tau_\alpha g_\rho \rho_0(r) + M^*(r)] = 0
\]

\[
\int_0^\infty dr \left(|G_\alpha(r)|^2 + |F_\alpha(r)|^2 \right) = 1
\]
Equations of Motion

\[\frac{d^2}{dr^2} \sigma_0(r) + \frac{2}{r} \frac{d}{dr} \sigma_0(r) - m^2_\sigma \sigma_0(r) = -g_{N\sigma} \sum_{\alpha} \left(\frac{2j_\alpha + 1}{4\pi r^2} \right) \left(|G_\alpha(r)|^2 - |F_\alpha(r)|^2 \right), \]

\[\frac{d}{dr} G_\alpha(r) + \frac{\kappa}{r} G_\alpha(r) - [\epsilon_\alpha - g_{N\omega} \omega_0(r) - \tau_\alpha g_\rho \rho_0(r) + M^*(r)] = 0 \]

\[\int_0^\infty dr \left(|G_\alpha(r)|^2 + |F_\alpha(r)|^2 \right) = 1 \]
Equations of Motion

\[
\frac{d^2}{dr^2} \sigma_0(r) + \frac{2}{r} \frac{d}{dr} \sigma_0(r) - m_\sigma^2 \sigma_0(r) = -g_N \sigma \sum_{\alpha}^{\text{occ}} \left(\frac{2j_\alpha + 1}{4\pi r^2} \right) \left(|G_\alpha(r)|^2 - |F_\alpha(r)|^2 \right),
\]

\[
\frac{d}{dr} G_\alpha(r) + \frac{\kappa}{r} G_\alpha(r) - \left[\epsilon_\alpha - g_N \omega \omega_0(r) - \tau_\alpha \omega_\rho \rho_0(r) + M^*(r) \right] = 0
\]

\[
\int_0^\infty dr \left(|G_\alpha(r)|^2 + |F_\alpha(r)|^2 \right) = 1
\]
Hadronic Models
A Brief Overview: Finite Nuclei

Equations of Motion

\[
\frac{d^2}{dr^2} \sigma_0(r) + 2 \frac{d}{r \, dr} \sigma_0(r) - m_\sigma^2 \sigma_0(r) \\
= -g_N \sigma \sum_{\alpha}^{\text{occ}} \left(\frac{2j_\alpha + 1}{4\pi r^2} \right) \left(|G_\alpha(r)|^2 - |F_\alpha(r)|^2 \right),
\]

\[
\frac{d}{dr} G_\alpha(r) + \frac{\kappa}{r} G_\alpha(r) - \left[\epsilon_\alpha - g_N \omega_0(r) - \tau_\alpha g_\rho \rho_0(r) + M^*(r) \right] = 0
\]

\[
\int_0^\infty dr \left(|G_\alpha(r)|^2 + |F_\alpha(r)|^2 \right) = 1
\]
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- $G_\alpha(r), F_\alpha(r)$
- $\sigma_0(r), \omega_0(r), \rho_0(r)$
- $\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r)$
- ϵ_α, masses/splittings
- hypernuclei data

\Rightarrow Compare to experiment!
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- \(G_\alpha(r) \), \(F_\alpha(r) \)
- \(\sigma_0(r) \), \(\omega_0(r) \), \(\rho_0(r) \)
- \(\Rightarrow \) \(\rho_p(r) \), \(\rho_n(r) \), \(\rho_B(r) \)
- \(\epsilon_\alpha \), masses/splittings
- hypernuclei data

\(\Rightarrow \) Compare to experiment!
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- $G_\alpha(r)$, $F_\alpha(r)$
- $\sigma_0(r)$, $\omega_0(r)$, $\rho_0(r)$
- $\Rightarrow \rho_p(r)$, $\rho_n(r)$, $\rho_B(r)$
- ϵ_α, masses/splitting
- hypernuclei data

\Rightarrow Compare to experiment!
We obtain:

- $G_\alpha(r), F_\alpha(r)$
- $\sigma_0(r), \omega_0(r), \rho_0(r), A_0(r)$
- $\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r)$
- ϵ_α, masses/splittings
- hypernuclei data

\Rightarrow Compare to experiment!
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- $G_\alpha(r), F_\alpha(r)$
- $\sigma_0(r), \omega_0(r), \rho_0(r), A_0(r)$
- $\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r), \rho_c(r)$
- ϵ_α, masses/splittings
- hypernuclei data

\Rightarrow Compare to experiment!
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- \(G_\alpha(r), F_\alpha(r) \)
- \(\sigma_0(r), \omega_0(r), \rho_0(r), A_0(r) \)
- \(\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r), \rho_c(r) \)
- \(\epsilon_\alpha, \) masses/splittings
- hypernuclei data

\(\Rightarrow \) Compare to experiment!
We obtain:

- $G_\alpha(r), F_\alpha(r)$
- $\sigma_0(r), \omega_0(r), \rho_0(r), A_0(r)$
- $\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r), \rho_c(r)$
- ϵ_α, masses/splittings
- hypernuclei data

\Rightarrow Compare to experiment!
Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

- $G_\alpha(r), F_\alpha(r)$
- $\sigma_0(r), \omega_0(r), \rho_0(r), A_0(r)$
- $\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r), \rho_c(r)$
- ϵ_α, masses/splittings
- hypernuclei data

\Rightarrow Compare to experiment!
We obtain:

- \(G_\alpha(r) \), \(F_\alpha(r) \)
- \(\sigma_0(r) \), \(\omega_0(r) \), \(\rho_0(r) \), \(A_0(r) \)

\[\Rightarrow \rho_p(r), \rho_n(r), \rho_B(r), \rho_c(r) \]

- \(\epsilon_\alpha \), masses/splittings
- hypernuclei data

\[\Rightarrow \text{Compare to experiment!} \]
Hyperonic QMC (2007)
Hyperonic QMC (2008)

Species Density Fraction (Y)

Density ρ [fm$^{-3}$]

- p^+
- n
- e^-
- μ^-
- Λ
- Σ^+
- Σ^-
- Σ
- Ξ^-
- Ξ^0
- u
- d
- s
The improvement in the 2008 parameterization of M^* is that the effect of the mean scalar field in-medium on the familiar one-gluon-exchange hyperfine interaction (that in free space leads to the N-Δ and Σ-Λ mass splittings) is also included self-consistently.

This has the effect of increasing the splitting between the Λ and Σ masses as the density rises and the prime reason why we find that the Σ hypernuclei are unbound.

Guichon, Thomas, Tsushima: 2008
QMC - Finite Nuclei

1st 1/2– Neutron Level in ^{20}Ne

2nd 1/2– Neutron Level in ^{20}Ne

QMC - Finite Nuclei

QMC - Finite Nuclei

QMC - Finite Nuclei

<table>
<thead>
<tr>
<th></th>
<th>E_B (MeV) [experiment]</th>
<th>E_B (MeV) [QMC]</th>
<th>r_c (fm) [experiment]</th>
<th>r_c (fm) [QMC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{16}O</td>
<td>7.976</td>
<td>7.618</td>
<td>2.73</td>
<td>2.702</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>8.551</td>
<td>8.213</td>
<td>3.485</td>
<td>3.415</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>8.666</td>
<td>8.343</td>
<td>3.484</td>
<td>3.468</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>7.867</td>
<td>7.515</td>
<td>5.5</td>
<td>5.42</td>
</tr>
</tbody>
</table>

Equations describe a static, spherically symmetric, non-rotating star, stable against gravitational collapse;

\[
\frac{dP}{dr} = -\frac{G \left(P/c^2 + \mathcal{E} \right) \left(M(r) + 4r^3\pi P/c^2 \right)}{r(r - 2GM(r)/c^2)}
\]

\[
M(R) = \int_0^R 4\pi r^2 \mathcal{E}(r) \, dr
\]
Equations describe a static, spherically symmetric, non-rotating star, stable against gravitational collapse;

\[
\frac{dP}{dr} = -\frac{G \left(\frac{P}{c^2} + \mathcal{E} \right) (M(r) + 4r^3\pi P/c^2)}{r(r - 2GM(r)/c^2)}
\]

\[
M(R) = \int_{0}^{R} 4\pi r^2 \mathcal{E}(r) \, dr
\]
Tolman-Oppenheimer-Volkoff

Equations describe a static, spherically symmetric, non-rotating star, stable against gravitational collapse;

\[
\frac{dP}{dr} = -\frac{G \left(\frac{P}{c^2} + \mathcal{E} \right) \left(M(r) + 4r^3\pi\frac{P}{c^2} \right)}{r \left(r - 2GM(r)/c^2 \right)}
\]

\[
M(R) = \int_0^R 4\pi r^2 \mathcal{E}(r) \, dr
\]
Equations describe a static, spherically symmetric, non-rotating star, stable against gravitational collapse;

\[
\frac{dP}{dr} = -\frac{G \left(\frac{P}{c^2} + \mathcal{E} \right) \left(M(r) + 4r^3\pi P/c^2 \right)}{r \left(r - 2GM(r)/c^2 \right)}
\]

\[M(R) = \int_0^R 4\pi r^2 \mathcal{E}(r) \, dr\]
There are issues with experimental constraints

Determining M experimentally is easy*...
There are issues with experimental constraints

Determining M experimentally is easy*... BUT!
There are issues with experimental constraints

Determining M experimentally is easy*... BUT!
There is very little experimental data for R.
There are issues with experimental constraints

Determining M experimentally is easy*... BUT!
There is very little experimental data for R.

*The data you are looking for...
Hyperonic QMC
TOV solutions
Hyperonic QMC
TOV solutions
What about higher densities?

“What about higher densities?”
Quark Models
A Brief Overview

MIT Bag Model

- 3 quarks in a ‘bag’,
- Separated from the QCD vacuum by an energy-density B,
- Constant, current-quark masses

Nambu-Jona–Lasinio (NJL) Model

- Simple inclusion of $D\chi$SB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model
- 3 quarks in a ‘bag’,
- Separated from the QCD vacuum by an energy-density B,
- Constant, current-quark masses

Nambu-Jona-Lasinio (NJL) Model
- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model
- 3 quarks in a ‘bag’,
- Separated from the QCD vacuum by an energy-density B,
- Constant, current-quark masses

Nambu-Jona–Lasinio (NJL) Model
- Simple inclusion of χSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

- 3 quarks in a ‘bag’,
- Separated from the QCD vacuum by an energy-density B,
- Constant, current-quark masses

Nambu-Jona–Lasinio (NJL) Model

- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \ m_d = 7 \text{ MeV}, \ m_s = 95 \text{ MeV} \]

Nambu-Jona-Lasinio (NJL) Model

- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \ m_d = 7 \text{ MeV}, \ m_s = 95 \text{ MeV} \]

Nambu-Jona-Lasinio (NJL) Model

- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models

A Brief Overview

MIT Bag Model

<table>
<thead>
<tr>
<th>MIT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_u = 5 \text{ MeV}), (m_d = 7 \text{ MeV}), (m_s = 95 \text{ MeV})</td>
</tr>
</tbody>
</table>

Nambu-Jona-Lasinio (NJL) Model

- Simple inclusion of D\(\chi\)SB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \ m_d = 7 \text{ MeV}, \ m_s = 95 \text{ MeV} \]

Nambu-Jona–Lasinio (NJL) Model

- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \quad m_d = 7 \text{ MeV}, \quad m_s = 95 \text{ MeV} \]

Nambu-Jona-Lasinio (NJL) Model

- Simple inclusion of DχSB,
- Still a simple model, but more sophisticated,
- Constituent-quark masses at low density, current-quark masses at high density.
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \ m_d = 7 \text{ MeV}, \ m_s = 95 \text{ MeV} \]

Nambu-Jona-Lasinio (NJL) Model

NJL:

\[
\begin{align*}
 m_q^* &= m_q + \Sigma_q = m_q - 2G\langle \bar{\psi}_q \psi_q \rangle \\
 &= m_q + \frac{8G N_c}{(2\pi)^3} \int \frac{\theta(k_F - |\vec{k}|)\theta(\Lambda - k_F)m_q^*}{\sqrt{\vec{k}^2 + m_q^*}}
\end{align*}
\]
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \ m_d = 7 \text{ MeV}, \ m_s = 95 \text{ MeV} \]

Nambu-Jona-Lasinio (NJL) Model

NJL:

\[
\begin{align*}
m_q^* &= m_q + \Sigma_q = m_q - 2G\langle \bar{\psi}_q \psi_q \rangle \\
&= m_q + \frac{8G N_c}{(2\pi)^3} \int \frac{\theta(k_F - |\vec{k}|)\theta(\Lambda - k_F)m_q^*}{\sqrt{\vec{k}^2 + m_q^{*2}}}
\end{align*}
\]
Quark Models
A Brief Overview

MIT Bag Model

MIT:

\[m_u = 5 \text{ MeV}, \quad m_d = 7 \text{ MeV}, \quad m_s = 95 \text{ MeV} \]

Nambu-Jona–Lasinio (NJL) Model

NJL:

\[k_F = 0 \quad : \quad m_u = 350 \text{ MeV}, \quad m_d = 350 \text{ MeV}, \quad m_s = 450 \text{ MeV} \]
\[k_F = \Lambda \quad : \quad m_u = 5 \text{ MeV}, \quad m_d = 7 \text{ MeV}, \quad m_s = 95 \text{ MeV} \]
Quark Models
NJL Effective Masses

![Graph showing dynamic quark mass vs. \(k_F \) in GeV]

- \(M_{u,d} \)
- \(M_s \)
Phase Transitions

The Gibbs Conditions for a phase transition are:

<table>
<thead>
<tr>
<th>Gibbs Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_H = T_Q$</td>
</tr>
<tr>
<td>$(\mu_i)_H = (\mu_i)_Q$</td>
</tr>
<tr>
<td>$P_H = P_Q$</td>
</tr>
</tbody>
</table>

- Thermal Equilibrium
- Chemical Equilibrium
- Mechanical Equilibrium
The Gibbs Conditions for a phase transition are:

Gibbs Conditions

- \(T_H = T_Q \) — Thermal Equilibrium
- \((\mu_i)_H = (\mu_i)_Q \) — Chemical Equilibrium
- \(P_H = P_Q \) — Mechanical Equilibrium
The Gibbs Conditions for a phase transition are:

<table>
<thead>
<tr>
<th>Gibbs Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_H = T_Q$</td>
</tr>
<tr>
<td>$(\mu_i)_H = (\mu_i)_Q$</td>
</tr>
<tr>
<td>$P_H = P_Q$</td>
</tr>
</tbody>
</table>

- Thermal Equilibrium
- Chemical Equilibrium
- Mechanical Equilibrium
The Gibbs Conditions for a phase transition are:

- Thermal Equilibrium: $T_H = T_Q$
- Chemical Equilibrium: $(\mu_i)_H = (\mu_i)_Q$
- Mechanical Equilibrium: $P_H = P_Q$
Phase Transitions

The Gibbs Conditions for a phase transition are:

<table>
<thead>
<tr>
<th>Gibbs Conditions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_H = T_Q$</td>
<td>Thermal Equilibrium</td>
</tr>
<tr>
<td>$(\mu_i)_H = (\mu_i)_Q$</td>
<td>Chemical Equilibrium</td>
</tr>
<tr>
<td>$P_H = P_Q$</td>
<td>Mechanical Equilibrium</td>
</tr>
</tbody>
</table>

$T = 0$
Hyperonic QMC
Phase Transition

![Graph showing species fraction Y_i vs. density ρ in fm$^{-3}$]

- n (proton)
- p$^+$ (proton)
- d (deuteron)
- p (proton)
- s (strange quark)
- u (up quark)
- e$^-$ (electron)
- μ^- (muon)
- Λ (Lambda baryon)
Hyperonic QMC
Phase Transition

![Graph showing species fraction vs. density](image-url)
Hyperonic QMC
Phase Transition

\[\rho_i \text{ [fm}^{-3}\text{]} \]

- Quark Phase
- Hadron Phase
- Total

\[\chi \]

J. D. Carroll
QMC dense matter
Quark Chemical Potentials related to independent chemical potentials;

\[\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{k_{F_i}^2 + M_i^2} \]

\[\mu_i = \frac{1}{3} \mu_n - Q_i \mu_e \]
Quark Chemical Potentials related to independent chemical potentials:

Chemical Equilibrium - quarks

\[\mu_i = B_i \mu_n - Q_i \mu_e = \sqrt{k_{F_i}^2 + M_i^2} \]

Chemical Equilibrium - quarks

\[\mu_i = \frac{1}{3} \mu_n - Q_i \mu_e \]
J. D. Carroll

QMC dense matter

Hyperonic QMC
Phase Transition

\[\chi \]

\[\rho_i \text{ [fm}^{-3}] \]

Quark Phase
Hadron Phase
Total
Nucleonic QMC

Phase Transition

```
Species Fraction $Y_i$

Density $\rho$ [fm$^{-3}$]
```

- n (neutron)
- p^+ (proton)
- e^- (electron)
- d (deuteron)
- s (strange)
- μ^- (muon)
- u (up)

J. D. Carroll QMC dense matter
Mixed-Phase Hyperonic QMC

TOV solutions
The inclusion of $D\chi$SB prevents a phase transition to quark matter,

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible,

The most likely degrees of freedom at high-density are still unknown.
Summary

- The inclusion of DχSB prevents a phase transition to quark matter,
- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible,
- The most likely degrees of freedom at high-density are still unknown.
The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)

- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible,
- The most likely degrees of freedom at high-density are still unknown.
Summary

- The inclusion of $D\chi_{SB}$ prevents a phase transition to quark matter, (dependent on HM/QM model)
- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible,
- The most likely degrees of freedom at high-density are still unknown.
Summary

- The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)
- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible,
- The most likely degrees of freedom at high-density are still unknown.
Summary

- The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)
- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible, (but this occurs for most models!)
- The most likely degrees of freedom at high-density are still unknown.
The inclusion of $D\chi_{SB}$ prevents a phase transition to quark matter, (dependent on HM/QM model)

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible, (but this occurs for most models!)

The most likely degrees of freedom at high-density are still unknown.
The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible, (but this occurs for most models!)

The most likely degrees of freedom at high-density are still unknown.

Outlook:

- Inclusion of Fock terms
- Inclusion of π contributions (Fock)
- Additional potential terms
- Effects of Fock terms in Finite Nuclei calculations
The inclusion of $D\chi_{SB}$ prevents a phase transition to quark matter, (dependent on HM/QM model)

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible, (but this occurs for most models!)

The most likely degrees of freedom at high-density are still unknown.

Outlook:

- Inclusion of Fock terms
- Inclusion of π contributions (Fock)
- Additional potential terms
- Effects of Fock terms in Finite Nuclei calculations
The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible, (but this occurs for most models!)

The most likely degrees of freedom at high-density are still unknown.

Outlook:

- Inclusion of Fock terms
- Inclusion of π contributions (Fock)
- Additional potential terms
- Effects of Fock terms in Finite Nuclei calculations
Summary

- The inclusion of DχSB prevents a phase transition to quark matter, (dependent on HM/QM model)
- The predictions are very sensitive to changes in model parameters (need to fix carefully),
- Good agreement with experimental data is possible, (but this occurs for most models!)
- The most likely degrees of freedom at high-density are still unknown.

Outlook:
- Inclusion of Fock terms
- Inclusion of π contributions (Fock)
- Additional potential terms
- Effects of Fock terms in Finite Nuclei calculations
The inclusion of $D\chi_{SB}$ prevents a phase transition to quark matter, (dependent on HM/QM model)

The predictions are very sensitive to changes in model parameters (need to fix carefully),

Good agreement with experimental data is possible, (but this occurs for most models!)

The most likely degrees of freedom at high-density are still unknown.

Outlook:

- Inclusion of Fock terms
- Inclusion of π contributions (Fock)
- Additional potential terms
- Effects of Fock terms in Finite Nuclei calculations
At Hartree–Fock level, the scalar self-energy also includes an exchange term, and becomes momentum-dependent:
At Hartree–Fock level, the scalar self-energy also includes an exchange term, and becomes momentum-dependent:

\[
\Sigma^s_B(k) = -g_{\sigma B} \langle \sigma \rangle \\
+ \frac{1}{4\pi^2 k} \int_0^{k_{FB'}} \frac{q M^*_B(q)}{E^*_B(q)} \\
\times \left[\frac{1}{4} g_{\sigma B'}^2 \Theta_\sigma(k, q) - g_{\omega B'}^2 \Theta_\omega(k, q) \right] \, dq
\]
At Hartree–Fock level, the scalar self-energy also includes an exchange term, and becomes momentum-dependent:

\[
\Sigma^s_B(k) = -g_{\sigma B} \langle \sigma \rangle + \frac{1}{4\pi^2 k} \int_0^{k_{FB'}} \frac{q M^*_B(q)}{E^*_B(q)} \left[\frac{1}{4} g^2_{\sigma B'} \Theta_\sigma(k, q) - g^2_{\omega B'} \Theta_\omega(k, q) \right] dq
\]
Hadronic Models
A Brief Overview: Hartree–Fock

At Hartree–Fock level, the scalar self-energy also includes an exchange term, and becomes momentum-dependent:

\[\Sigma_B^s(k) = -g_{\sigma B} \langle \sigma \rangle + \frac{1}{4\pi^2 k} \int_0^{k_{FB'}} \frac{q M_B^*(q)}{E_B^*(q)} \times \left[\frac{1}{4} g_{\sigma B'}^2 \Theta_{\sigma}(k, q) - g_{\omega B'}^2 \Theta_{\omega}(k, q) \right] dq \]
Hadronic Models
A Brief Overview: Hartree–Fock

- Momentum-dependent $\Sigma \Rightarrow$ harder to solve
- re-definition of μ_i
- changes to self-consistencies
Hadronic Models
A Brief Overview: Hartree–Fock

- Momentum-dependent $\Sigma \Rightarrow$ harder to solve
- re-definition of μ_i
- changes to self-consistencies
Hadronic Models
A Brief Overview: Hartree–Fock

- Momentum-dependent $\Sigma \Rightarrow$ harder to solve
- re-definition of μ_i
- changes to self-consistencies
Hadronic Models
A Brief Overview: Hartree–Fock

- Momentum-dependent $\Sigma \Rightarrow$ harder to solve
- re-definition of μ_i
- changes to self-consistencies
OR... \(m = \langle m \rangle + \delta m \)
Hadronic Models
A Brief Overview: Hartree–Fock

OR. . . $m = \langle m \rangle + \delta m$
OR... \(m = \langle m \rangle + \delta m \)

Hartree–Fock \(H_s \) (QHD)

\[
H_\sigma = \int d\vec{r} \left[E(\langle \sigma \rangle) - \frac{1}{2} \langle \sigma \rangle \langle \frac{\partial E}{\partial \langle \sigma \rangle} \rangle + \frac{1}{2} \delta \sigma \left(\frac{\partial E}{\partial \langle \sigma \rangle} - \langle \frac{\partial E}{\partial \langle \sigma \rangle} \rangle \right) \right]
\]
Hadronic Models
A Brief Overview: Hartree–Fock

- still momentum-independent (additional energy contribution)
- re-definition of μ_i
- changes to self-consistencies
Hadronic Models
A Brief Overview: Hartree–Fock

- still momentum-independent (additional energy contribution)
- re-definition of μ_i
- changes to self-consistencies
Hadronic Models
A Brief Overview: Hartree–Fock

- still momentum-independent (additional energy contribution)
- re-definition of μ_i
- changes to self-consistencies
Further Reading I

Carroll

Applications of the Octet Baryon Quark-Meson Coupling Model to Hybrid Stars (PhD Thesis).

Carroll, Thomas

in preparation

Carroll, Leinweber, Williams, Thomas

Phase Transition from QMC Hyperonic Matter to Deconfined Quark Matter.
Phys.Rev.C79:045810, 2009
Further Reading II

Guichon, Thomas, Tsushima
Binding of hypernuclei in the latest quark-meson coupling model.

Rikovska-Stone, Guichon, Matevosyan, Thomas
Cold uniform matter and neutron stars in the quark-mesons-coupling model.
[doi:10.1016/j.nuclphysa.2007.05.011]
Thank You!

Fin